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AbstracL We develop a theory of the care-valen&valence Auger spectra from 3d msition 
metals including core-hole screening effects. First, we d y s e  the limiting case when the d 
electrons fully screen the core hole in the initial state. We employ the variational method 
including singly excited states to consmet the ground state with a completely screened core 
hole and solve the resulting many-body problem for correlated valence elecmns using the self- 
consistent version of the perturbation theory in powers of U / w  (where U is Hubbard on-site 
interaction and w is the bandwidth) within the T-matrix approxidon. The resulting lineshape 
has a contribution proportional to the one-particle density of valence states and, in addition, also 
the two-holeone-elecuon contributions, but not the two-holeJenn that had been suggested in 
the literature. The latter arises only for filled bands. The comparison with experimental data is 
qualitatively good for early 3d metals, giving a natural explanation of the so-called 'negative- 
LI' behaviour, but deteeliomcs with increasing atomic number. Next we present a simple 
approximation to describe the effects of incomplete relaxation in the initial state. Contributions 
from the unrelaxed initial state are proportional to a two-hole density of states convolved with a 
suitable c m  lineshape. This removes the difficulties with the late transition metals. Our results 
indicate that the core-hole screening becomes progressively less complete towards the end of 
the 3d series. The t h e w  then reduces to the standard one. based on two-hole propagators in 
the lowdensity approximation. 

1. Introduction 

The core-valence-valence (CVV) Auger spectra from late 3d transition metals (for example, 
Cu) are strongly duenced  by electron-electron correlations responsible for their quasi- 
atomic character, as explained by the Cini-Sawatz!q theory [1,2]. The situation is still 
far from being understood in the middle or at the beginning of the 3d series. Indeed, the 
Cini-Sawatzky theory was formulated originally for completely occupied bands, where no 
core-hole screening is possible, and it is now well established [3] for such situations (Cu, 
Ag, Au [4]). It was then extended 151 to the case of a small hole concentration f lh  (i.e. 
almost completely filled bands). One can prove rigorously that core-hole screening effects 
are o(flh), and thus the spectrum can be well approximated by the two-hole equilibrium 
density of states that can be calculated in the lowdensity approximation. Such a theory was 
successfully applied to Pd 161. On the other hand, there is currently no correlated theory for 
large nh, and tentative applications of the Cini-Sawatzky formulae to such situations gave 
stuprising results. The Auger spectra from early transition metals (for example, Sc and Ti) 
and some of their compounds are shifted towards higher kinetic energies, which was initially 
interpreted [7] in terms of a negative value of the Hubbard interaction parameter U. While 
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a negative U is perhaps not impossible in principle, it is generally believed that the evidence 
in this sense is weak. In a more recent paper, Hedeglird and Hillebrecht [8] suggested that 
self-convolving the x-ray emission spectrum instead of the photoemission spectrum would 
lead to a shift in the correct direction. This approach lacks a clear theoretical foundation, 
but has the merit of suggesting that the screening electrons could play a role; no such effects 
can exist in the Cini-Sawatzky theory for completely occupied bands, while in the low- 
density expansions they are negligible. Recently, S a "  and co-workers 191 reevaluated 
the experimental data and fitted the measured specm as superpositions of the photoemission 
lieshape and its self-convolution. They also proposed a mechanism involving the electron 
cloud screening the core hole. The initial state of the Auger transition can be written as 
- c3d"cu, where c denotes a hole in a core level, and ol is the screening electron. This state 
can decay via two distinct Auger processes. 

V Drchal and M Cini 

(i) The well known two-hole Auger transition or two-hole [Zh] process 

- c3d"a + 3dn-'a'B' + e- (1) 

in which the core hole is filled by a 3d electron, while a second 3d electron is ejected in 
the continuum. The two 3d holes in the final state are screened by the electrons 01' and 
B'. They assume that this process contributes to the lineshape a term proportional to the 2h 
density of states. 

(ii) The onehole [lhl Auger process, proposed by Sarma and co-workers [9] 

in which the core hole is filled by the screening electron (Y and a 3d electron is ejected in 
the continuum, or conversely, the core hole is filled by a 3d electron, while the screening 
electron (Y is ejected. A single 3d hole in the final state is screened by one electron a'. 
Despite the success of Sarma and co-workers [9] in fitting, for example, the Ti lineshape, we 
remark that (2) does not explain the nature of the proposed Ih mechanism correctly. Nor is 
it at all clear why it should give a contribution proportional to the onehole density of states. 
I t  is obvious that strictly Ih processes are impossible, since two electrons are involved in 
an Auger process in any case. Since the very nature of the mechanisms involved needs 
to be clarified, we propose a simple theory in order to explore the qualitative features. In 
section 2 we develop a variational approximation for the ground state, which is used in 
sections 3 and 4 to calculate the spectrum assuming that the Auger decay takes place in 
the fully relaxed initial state (two-step theory). In section 5 we include the main effects 
of incomplete relaxation. The complexity of the many-body calculation will be kept to 
a minimum, and we shall focus on the principles. Numerical examples are presented in 
section 6 and discussed in section 7, while the main findings are summarized in section 8. 
The results should pave the way to more realistic calculations that are currently under way. 

2. Screening of the core hole 

The core hole in transition metals does not produce the impurity bound state and it is 
screened predominantly by the. d-electrons, while the contribution of the s and p electrons is 
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small [lo]. We may thus expect that most of the physics can be captured by a simple model 
for the valence electrons described by the d-times degenerate Hamiltonian of Hubbard type 

(3) H = Ho + H, + HCh 

where 

is the band term, 

is the interaction term, and 

describes the coupling of valence electrons to the core hole at the origin. The indices U and 
p denote degenerate spin-orbitals (U, B = 1, .., d), and nka = akur ,  and ni, = a,ai, are 
number operators in the Bloch and site representations, respectively. They are defined via 
annihilation and creation operators sku, aia, etc. In the case of the d states, the degeneracy 
d = 10. The average electron concentration per site and per spin-orbital will be denoted as 
n, (0 6 n 6 1). 

Let [Y) be. the (normalized) ground state of the Hamiltonian (3) without the core hole 
(W = 0): 

+ 

(Ho + HdlW = EoIW (*[cq = 1. (7) 

The ground state 10) of non-interacting electrons (U = 0), or interacting elechons 
(U > 0) treated within the Hartree-Fock approximation, in the presence of the core hole 
(W > 0) is given just by a single Slater determinant built up from the occupied oneelectron 
eigenstates ] p a )  of a single impurity Hamiltonian: 

The ground state IY) without the core hole (W = 0) has the same form, but the states Ipor) 
are replaced by the Bloch states Ikor). The state 10) can be obtained from IY) by creating 
an infinite number of electron-hole pairs [lll,  and it'is orthogonal to IY), (WIO) = 0 (the 
so-called Anderson orthogonality catastrophe). On the other hand, the photoemission and 
Auger spectra can be calculated with high accuracy, if one includes only the one and two 
electron-hole excitations [12]. We will thus analyse a simple class of trial states 
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The variational parameters b,  should be determined so that i? = (@IHo+-H,,,lQ) attains its 
minimum. They ace non-zero only for occupied states Iqa), and due to the equivalence of 
spin-orbitals a, bsu = b, for all a. The variational procedure is complicated by the presence 
of a sharp Fermi surface, and if we equate the first variation to zero using as usual Lagrange 
multipliers, we find a relative minimum that is not physically relevant. In the appendix, we 
outline the derivation of the ground stake within the Ham-Fock approximation and show 
that a slightly modified orthogonality theorem holds in the present model. The analysis is 
greatly simplified by assuming that the b, depend only on the energy E(q) ,  but not on the 
direction of the vector q: 

V Drchal and M Cini 

which is a reasonable approximation for isotropic solids. As a result, we get a simple form 
of the ground state IQ) with a completely screened core hole (W > 0): 

As explained in the appendix, the states \Fa) from which the screening electrons are 
removed belong to the Fermi surface, as one would intuitively expect [lo, 131, because 
this yields the lowest possible energy for the screening state. This simple model describes 
the essential features of core-hole screening, although it neglects some of its details, as 
the modification of the atomic wavefunctions by the core-hole potential and the Friedel 
oscillations. 

3. Description of the Auger process: fully relaxed initial state 

In this section we employ the approximations currently used in the literature. We use (i) 
the two-step approximation, i.e. we assume that formation of the core hole and the Auger 
process are independent, (ii) neglect competition with other decay processes, (iii) use the 
Golden Rule of quantum mechanics to calculate the transition rate, (iv) assume a sharp 
core level, (v) assume that the Auger electron does not interact with the solid left behind, 
(vi) assume that the Auger process is localized on one atom, (vii) assume constant (energy- 
independent) transition mabix elements, and (viii) neglect all surface-related effects. On 
the other hand, we assume that the core hole is completely screened by valence electrons. 
The Auger intensity is then given by 

where I@) is the ground state of the electronic system with a completely screened core 
hole, approximately given by (1 l), E is the kinetic energy of the Auger electron, H is the 
Hamiltonian of the valence electrons (3), and 
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is the Hamiltonian of the Auger Wansition. According to assumption (vii), the transition 
mahix elements Me# are constants independent of energy, and the summation runs over 
the spin-orbitals a and j3 on the site at the origin. Within the degenerate band model, 
Me# = -Mga, and IM,gl = M =constant. Employing (11) and (13). the Auger intensity 
can be expressed as 

+m 

I,,@) = -- 21M12 Im (1 e-i(E-io)r G,@h”’(aPy, t )  dt) (14) 
M Y  ?r ( 1 ~ - n ) d  

0 

in terms of the three-particle causal Green function, which has already been used in this 
context [5] :  

G~l“’(Olsv, t )  = ( - D 3 ( ~ l ~ ( a o Y ( t ) a ~ ( t ) a ~ ( ~ ) ~ a o ~ a ~ 1 l ~ ) .  (15) 

In (14), we have omitted the exponential factor exp[-i(Eo - E F ) ~ ] ,  where EO is the energy 
of the ground state I*). This is equivalent to choosing a new origin on the energy scale. 
The superscripts (hhe) denote that this Green function describes the propagation of two 
holes and one electron. 

4. Approximate solution of the many-body problem 

In order to calculate the threeparticle Green function GP)(01j3y, t),  equation (15). which 
is a very difficult problem, we develop an approximate method based on the usual many- 
body perturbation theory in powers of U / w ,  where w is the bandwidth. We shall neglect 
all the,terms corresponding to the genuine threeparticle correlations, i.e. those containing 
simultaneously the interactions between two or three different pairs of particles, for example 
01-0 and a-y. On the other hand, we shall retain the terms that include interactions between 
particles belonging to one pair, say a+. but no interactions with the thud particle y .  The 
three-particle Green function is then expressed via the two-particle and one-particle ones. 
Using obvious notation: 

GP’(aPy, t )  = G:bh’(~j3, t)GE(y, t )  + G?)(01y, t)G:(B, t )  + G,m”)(Py, t)G:(01, t )  
- 2Gf)(01, t)G,”)(P, t )Gf ) (y ,  t )  (16) 

if 01 # P ,  01 # y and ,3 # y. If, however, two indices are equal, the non-zero average 
values of the number operators have to be taken into account and we find 

Gps”(01y~. t )  = (1 - n)*Gf’(a, t )  + GP’(ay, t)G:(y, t )  + G r ) ( a y .  t)G:(y, t )  
- G f ) ( a ,  t)G,”)(y, t)G?’(y, t )  (17) 

for p = y ,  and a similar expression for a = y .  The last term in (16) and (17) has to be 
subtracted in order to avoid double counting. 

The expression for the Auger intensity is found by inserting (16) ‘and (17) into (14): 

(18) 
1 

II 
I,,(E) = -- ImA(E)O(EF - E )  
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where 

V Drchal and M Cini 

+m 

A ( E )  = (1 - n)’G$)(E) + (d - 1) 1 * ( A G Y ) ( E  - o)G$)(o)) 
k i  

-m 
m 

+ i d  1 * 21ri G,Bh)(E - o)Gt)(w). (19) 
-m 

We have omitted the constant prefactors and performed the Fourier transformation in (14) 
from the time representation of the Green functions to the energy representation. The two- 
particle functions correspond to different spin-orbital indices, which can be suppressed for 
the degenerate model, and 

is the interaction part of the electron-hole two-particle Green function. Thus, the ‘totally 
relaxed’ spechum is generally a superposition of l h  and 2hle contributions. When n 
approaches unity, the relaxed ground state remains orthogonal to IY), but the spectrum 
approaches the CiniSawatzky lineshape. At n = 1, the relaxed ground state coincides with 
IY) and the usual closed-band theory is recovered. 

We have calculated the one-particle and two-particle Green functions within the T-matrix 
approximation. This approximation is exact in the limit of a low concentration of particles, 
either electrons or holes, and it yields a reasonable interpolation between these two limiting 
cases. Moreover, it is a conserving approximation in Baym and Kadanoff sense [14], it has 
correct symmetry with respect to the electron-hole transformation and it obeys the Luttinger 
theorem [lS]. For simplicity, we have considered only the non-magnetic solution, although 
it is incorrect in the case of Fe, CO and Ni. The two-hole Green functions contain the 
two-hole T-matrix (ladder), and the electron-hole Green functions are constructed from 
the electron-hole T-matrix. We have employed the so-called local approximation, which 
consists in keeping only the terms diagonal in the site representation in all equations for 
Green functions. The causal Green functions are replaced by the retarded ones. The details, 
particularly the derivation of the set of the integral equations that should be solved self- 
consistently, can be found in [16,17]. Concerning the above treatment of correlation effects, 
we wish to stress that the many-body problem is very involved. However, at the beginning 
of the 3d series, the correlation effects are evidently moderate and any many-body scheme 
will produce essentially the same results. Near the end of the series, where correlations are 
large and produce quasi-atomic resonances with their multiplet splittings, we are favoured 
by the fact that such effects are now well understood [18,19] and the ladder approximation 
becomes exact in the limit of closed bands. To this level of sophistication, we may think 
that each multiplet component can be dealt with independently and our treatment describes 
each multiplet component in turn, with its effective U. Thus we have good reason to believe 
that the present simplified analysis will turn out to be adequate to give a first insight into 
the problem. 
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5. Incomplete relaxation effects 

For n close to unity, we are free to assume complete relaxation (as in the last two sections) 
or even a complete lack of relaxation: the theory predicts the same lineshape in both cases. 
Except for this limiting case,' which is well understood, the problem is very difficult: the 
predictions of the two approaches differ vastly, and none of them is justified, since we must 
include the possibility that the system fails to relax completely around the core hole before 
the Auger decay takes place. Here, we wish to propose a simple approximation that should 
include the main effects of partial relaxation provided that we are ready to ignore plasmon 
and other shake-up satellites. 

We introduce the inverse 8 of the~hole lifetime and the inverse r of the relaxation time 
needed to screen the core hole. We assume that both are small, compared to the other 
relevant energies. We use the onestep description [20] of the Auger process, but assume 
that the most important intermediate states are the orthogonal states I@) and IW); in other 
terms, our approximation for the spectrum is 

where 

f @ ,  t') = ( ~ ~ a ~ e i [ H ( 0 ) + i ~ , l t ' a ~ l m )  ( m l ~ ; p ( l ) O - f ' ) ~  AI") 

m."=b..P 

(m~laze-iW(0)-irqlt a m .  (22) 

In this equation, H(u)  is the Hamiltonian with U core electrons, rOp is a complicated operator 
describing virtual Auger transitions and the various relaxation processes that eventually take 
IY) into IO). One of the ingredients of (22) is just the Green function of the core hole: 

= -i(~l~,f~i[H(O)+ir,,lt GI*). (23) 

When our assumptions apply, in (21) we may replace g&) by its long-time expaniion. 
Neglecting fine details like the infrared catastrophe and all other shakeup effects, we can 
model it as follows: 

(24) gc(l) = -ie-iscr-(r+8)r, 

The density of states that is associated with this quantity is the same as that observed in 
photoemission. In this approximation, it is a Lorentzian and both lifetime and relaxation 
effects contribute to its width. This is correct, although in a more precise description the 
 relaxation broadening should be asymmetric. 

The terms with m = IW) and m' = 10) or m =,I@) and m' = IW) in (22) vanish because 
H(1) cannot evolve a 3hle state into a 2h state. Thus, to obtain a sensible approximation, 
we need the long-time behaviour of 

pc (t) = -i(@ ~a~ei[~(o)+irwl' 4 w .  (25) 
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The unrelaxed ground state evolves into It) = ~["(o)+i r~~rac~Y) ,  and for long times t, this 
should be proportional to I@) .  Since the hole decays, the normalization condition is 

1, Drchal and M Chi 

lec(t)t2 + tBc(t)lz = e-=' (26) 

and asymptotically 

pc(t) = ~(w)e"s~'-6* (27) 

where &a = 
factor of modulus unity, that we do not need to calculate. Thus 

+ E,,, and E, is the relaxed ground-state energy; p(w) is a constant phase 

should be the sum of two terms. The first one is 

We now write 

where MO is a new constant, in order to acknowledge that !MIZ is proportional to the 
decay rate and hence to the corehole inverse lifetime. Thus, we see that the totally relaxed 
lineshape is convolved with a suitable Lorentzian to account for the hole decay. The second 
term is 

where D is the 2h density of states; it is convolved with a Lorentzian of width r and centred 
at energy cC. The ratio of the areas 6/ r is a measure of the degree of relaxation of the 
initial state of the Auger transition. Thus, (28) interpolates smoothly between two opposite 
situations. When metallic screening prevails, and core holes are long Lived, S / r  will be 
small and the Auger spectnun will be well approximated by the fully relaxed theory. For 
closed or nearly closed bands, the degrees of freedom responsible for core-hole screening 
are. slow, and corehole decay can be neglected: this is the established theory. It is for 
small n that we expect the spectrum to be a linear combination of two widely different 
ones, originating from relaxed and unrelaxed initial states. 

However, what we propose is not just interpolation, because 6 and r can be measured 
and calculated independently. For instance, the lifetime is known from Auger matrix element 
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calculations, and core photoemission allows an empirical determination of r. Auger- 
photoelectron coincidence spectroscopy (APECS) provides a further experimental test of 
the validity of our model. If (22) holds, both spin-orbit split components of the core L 
photoemission lines should consist of a main peak and a shake-up satellite, separated from 
it by the relaxation energy Egs. The satellite intensity may vanish, in which case the Auger 
lineshape should be the one of section 4. Otherwise, APECS should allow the observation 
of the lineshapes originating from both; they should turn out to be rather different at the 
beginning of the series, and while the spectrum in coincidence with the main peak should 
be the one of section 4, the shape of the one deriving from the satellite should reflect the 
2h density of states. 

6. Numerical resdts 

The calculations were done for all transition 3d metals using a simple model given by the 
semi-elliptic density of states with the bandwidth w = 2. We have employed the strengths 
of the pair interaction as given in [21], corrected with respect to the actual d-band filling 
nd = nd. The values of nd were taken from [22]. These input parameters are summarized 
in table 1. 

U/w=0.236, nS.254 UIwd.408, ~ 0 . 5 4 9  

-8 -6 -4 -2 0 2 -8 -6 -4 -2 0 2 

Energy Energy 
Pigurel. Computed Augerspec&L”suming perfect 
screening of the core hole (section 4). The parameters 
Ulw = 0.236 and n = 0254 correspond to li. The 
conhibutions from lhe one-hole process (broken curve), 
the elechowhole bound state convoluted with the one- 
hole propagator (dotted curve) and from the two-hole 
process convoluted with the one-electmn propagator 
(chain curve) ax shown together with the total Anger 
intensity (full curve). The origin of the energy axis is 
shifted to EF. The energy is measured in relative unik 
such that Ule unpenurbed bandwidth w = 2 

Figure 2. The same as in figure I ,  but for the 
parameters U / w  = 0.408 and n = 0.549 corresponding 
to Mn. 
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Table 1. The p a r a w n  used to calculate Auger speura of 3d metals: occupancy of the d-band 
nd. Hubbard U. and the bandwidth W .  together with the weifits of various Auger processes 
determined by the present theory. 

"; Ub wL w;h w& w i h e  

Sc 2.54 1.263 6.80 0.186 0.566 ~'0.058 0376 
Ti 2.54 1.684 7.14 0.236 0.379 0.137 0.484 
V 3.61 1.938 ~ ~ 7.48 0.259 ~ 0.245 ~ 0.198 0.557 
cr 4.52 2.302 7.14 o m  o.im 0.259 0.5'16 
Mn 5.49 2.638 6.46 0.408 , VI?, .,.., 9.310, , , ,  0583, , , , ,  
Fe 6.53 2.818 5.44 0.518 0.067 0.342 0.591 
CO 7.53 3.062 5.10 0.600 0.043 0.328 0.629 
Ni 8.55 3.284 4.08 0.805 0.023 0.303 0.674 
Cu 9.51 3.561 3.06 1.163 0.009 0.113 0.878 

a Ref. 1221. 
Ref. [211. 
This work. 

U/w=0.805, n=0.855 U/w=0.805, n=O.855 

-8 -6 -4 -2 0 2 -8 -6 -4 -2 0 

Energy Energy 
Figure 3. The same ss in figure 1. but for the Figum 4 The Auger 5 p t "  without core-hole 
parameters U f w  = 0.805 and n = 0.855 corresponding screening calculated aemrding to the Cinilsawatzky 
to Ni. theory. The parameters U l w  = 0.805 and n = 0.855 

correspond to Ni. The origin of the energy axis is 
shihed to ~ E F .  ?he energy is measured in relative units 
such that the unperturbed bandwidth w = 2. 

The calculated Auger spectra for Ti, Mn and Ni are shown in figures 1-3, and the Auger 
spectrum of Ni without the core-hole screening is shown in figure 4. The relative weights 
of the three contributions to the total spectrum (19) are given in table 1. In figure 5, we 
compare the present theory including the core-hole screening and the Cini-Sawatzky theory 
without screening directly with the experimental data for Ti taken from [SI. In figure 6, we 
make a similar comparison for Ni with experimental data taken from 1231. 
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-8 -6 -4 -2 0 2 4 

Energy (eV) 

Ni 

Figure 5. Experimental n 4 - M&b5 speer" 
(black points) taken from [SI compared with the 
theoretical curve calculated according to the present 
theory assuming complete screening of the core hole 
(full curve) and according to the Cini-Sawatzky theory 
(broken curve) for the parameters U = 1.684eV, 
w = 7.14eV and n = 0.254 corresponding to Ti. The 
theoretical curves were broadened by a Gaussian with 
a = 0.7eV. 

Figure 6. Experimental Ni L3 - MasMnr spectrum 
(black points) &en horn figure 2 of [U] compared with 
the theoretical Curve calculated according to the present 
theory assuming complete screening of the core hole 
(thick full curve) and according to the Cini-Sawatzky 
theory (thin full curve) for the Wmeters U = 
3.284eV, w = 4.08eV and n = 0.855 corresponding 
to Ni. The theoretical curves were broadened by a 
Gaussian with a = 0.7eV. 

7. Discussion 

Let us first consider the Auger cvv spectra calculated under the assumption of complete 
screening of the core hole. They are given, according to (19). by a sum of three 
contributions. 

(i) The one-particle density of valence states. This arises from pinning the energy of one 
of the two holes at the Fermi level due to the screening effects. Its threshold is, in fact, the 
same as for the usual self-convolution of the one-particle density of states. It corresponds 
to the one-hole process proposed by Sarma and co-workers [9]. 

(ii) The three-particle density of states corresponding to the hound (excitonic-like) state 
of one electron-hole pair convoluted with the one-hole propagator. 

(iii) The threeparticle density of states which comes from the usual twwhole process, 
but, in addition, it is convolved with the one-electron propagator. 

There are important differences between the theory of sections 3 and 4 and the approach 
proposed by Sarma and co-workers [9]. Our theory describes the Auger spectrum in terms 
of the threeparticle Green function which may be contracted into the oneparticle GF, if 
two spin-orbitals coincide leading thus to the lh  process. On the other hand, Sarma and 
co-workers [9] from the beginning postulate the lh  and 2h processes. Their description of 
the 2h process is conceptually incorrect, becausedhey neglect the dynamics of the screening 
electrons. This dynamics is simply but consistently included in the present theory via three- 
particle Green functions. The good quality of the fit of experimental data presented in [9] 
can be explained as follows. The 2h density of states is constructed as a self-convolution 
of the photoemission spectral densities, which are, in fact, one-particle densities of states 
broadened by the lifetime and measuring device functions. Such a quantity can successfully 
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mimic the contribution from the three-particle CF, which is a correct quantity yielding the 
Auger specmm in the fully screened case. 

Taking into account the LW spectrum, the results show quite goad agreement with 
experimental data in the case of early 3d metals (see figure 1 and particularly figure 5). The 
process (ii) in these early metals gives the contribution which can mimic, to some extent, the 
shape and position of the one-hole process (i). The applicability of the 'completely relaxed' 
theories to these metals confums the conclusions from electron energy loss experiments by 
Fink and co-workers 1241. It was concluded from a comparison of such experiments with 
earlier photoemission data [25] that lifetime broadening gives only a small contribution to 
the 2p level width, and according to section 5 the Auger decay must predominantly occur 
in a relaxed ground state. 

Not unexpectedly, the agreement of the relaxed theory with experiment deteriorates in 
the middle of the 3d series (figure 2) and the calculated weights of the processes (ij(iii) 
differ more significantly from the results of the analysis of experimental data. 

The trend continues in the late 3d metals, and figure 3 reports the results of a calculation 
which assumes a relaxed initial state in the NI case. The weight of the one-bole process is 
low, but the process (ii) gives a strong contribution situated very close to EF. Moreover, the 
contribution from the process (iii), which would correspond to the usual two-hole transition. 
is significantly broadened by the convolution with the density of the almost occupied 
one-electron valence band. The resulting specbum clearly differs from that measured 
experimentally. In figure 6 we compare the experimentally measured spectrum [23] of 
Ni with that predicted by the present theory including the core-hole screening and by the 
Cii-Sawatzky theory without screening. The Cini-Sawatzky theory agrees much better 
with experimental data. 

Here, the theory of section 5 is particularly needed. According to it, incomplete 
relaxation becomes important. This is physically reasonable, because for small nh there 
is little phase space left for the screening electrons, the screening degrees of freedom 
must become slow, and the lifetime contribution to the photoemission core level width is 
therefore important. The absence of evident core-hole screening effects in the case of Ni 
and other late 3d metals is due to the fact that little screening actually takes place during 
the core-hole lifetime. In fact, it bas been known for a long time [5,26] that a low hole 
density expansion is adequate for Ni. Even the usual two-hole density of states (figure 4) 
that follows from the Cini-Sawatzky theory [1,2] does much better than the 'fully relaxed 
theory', in describing the measured spectrum. The theory of section 5 aims to provide the 
principle for describing the whole 3d series. The above numerical results show that, at least, 
we achieved an explanation of the 'negative-U' behaviour of early transition metals and a 
reasonable interpolation between the two ends of the series. 

8. Conclusions 

We have developed a simple theory describing the Auger electron spectra from open-band 
systems. The main issue is that of properly describing the effects of core-hole screening, 
which do not arise in closed-band systems and are therefore ignored in the Cini-Sawatzky 
theory and its extensions. 

An extreme point of view would l&d one to assume that core-bole screening is perfect 
(sections 2-4). We developed this case using a simple form of the screened ground state, and 
omitting the genuine threeparticle correlations in the evaluation of the three-particle Green 
function. Both these approximations can somewhat affect the final form of the theoretically 
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calculated Auger lineshape. However, the simplified ground state fulfills the Anderson 
orthogonality theorem. 

We have found that assuming a complete screening of the core hole is far better than 
neglecting screening effects near the beginning of the series, but is worse near the end, 
where the previous theory is much preferable. In fact, near the beginning of the series, 
we explain the main features of the spectra without assuming a ‘negative U’. However, 
in order to describe correctly the evolution of the CVV Auger spectra within the whole 
transition me& series it is essential to use a dynamical theory taking properly into account 
the time dependence of the core-hole screening by the valence electrons. A more complete 
theory was therefore proposed in section 5. As shown there, we believe that the intermediate 
transition metals are particularly promising samples for future APECS experiments. Auger 
spectra from main and satellite core lines are predicted by sections 4 and 5, respectively, 
and may well be very different. The theory of section 5 also recovers the results of the low- 
density approximation near the end of the series, where the effects of core.-hole screening 
on Auger lineshapes are small. 

Thus, we obtained a coherent picture that accounts for the main experimental features 
throughout the 3d series, at least qualitatively. The known results for the late transition 
metals are included and reconciled with a fair understanding of the so-called ‘negative-U’ 
behaviour at the beginning of the series. A more quantitative understanding of the behaviour 
in the middle of the series requires firther work, including multiplet effects and a proper 
account of ferromagnetism; such work is  under way. 
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Appendix. Ground state with the core hole 

We find 
- 
E = Eo[[a + bd[’+ d(1- n)S] + (1 - n)(FS - M ) d  

- W [ l a + b d [ 2 - ( 1 - n ) [ a + b ( d - 1 ) ~ 2 + ( 1 - n ) S + n ( l  - n ) S ( d - l ) ]  
(AI) 

where 

The normalization and orthogonality constraints are 

(@I@) = la +bdI2+ (1 - n)Sd = 1 (ql@) = a  + bd = 0. (A3) 
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The orthogonality is being assumed for the moment, but wilI be discussed below. The 
average energy is then simplified: 

V Drchal and M Cini 

- 
E = E o + F - W [ I + n ( d - l ) l + ( l  -n)[Wlb12-Mld. (A41 

Because only the fourth term on the right-hand side of (A4) depends on bq, we need to 
minimize the quadratic form 

under the normalization constraint 

This can be achieved by finding the eigenvector belonging to the smallest eigenvalue of the 
matrix associated with the quadratic form (A5). The same result can be easily found by a 
different approach. With the assumption of (lo), equation (A5) can be written as 

Q = w l ~ ~ : P ( E ) B ( E ) d E ~  -SEF -m w(E)IS(dIzdE (A7) 

and the normalization constraint (A6) as 

where p(&) is the density of states corresponding to the dispersion law E(q) ,  and E p  is the 
Fermi energy. The second term in (A7) will achieve its minimum under the normalization 
constraint (AS) if all the weight of I ,~(E)I~ is concentrated at EF: IB(&)Iz c( 6 ( E  -EF). The 
function B(E) would then be given by a square root of the Dirac distribution, which is not 
a well defined quantity. We thus employ the representation 

B(h, E )  = &h’c)[(l - n)/J(Ep)hd]”2 @(EF - E)@(& - E p  + h)  (A% 

where @(h, E) is the phase angle and 0 denotes the Heaviside function. At the end of the 
calculations, we take the limit h --f 0. Without loss of generality, we can set 4(0, EF) = 0. 
The first term of (A7), which is always non-negative, then also reaches its minimum (= 0). 
The one-particle states IFa), from which the screening electrons are removed, are defined 
as 
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They are normalized to unity, mutually orthogonal, (FollFp) = Sa$, and orthogonal to 
Wannier states: (ipIFol) = 0 for all i , w ,  and ,9. We find b = 0, and thus a = 0. The 
ground state 14) is then given by (11). 

Let us now deal with the orthogonality issue. The vanishing of b can be understood 
from general principles. Indeed, we are free to choose the phases of each bq arbitrarily; 
hence, the phase of b can be changed at will without changing the physics. Since the energy 
of (32) depends on b, the ground state must correspond to b = 0. Inserting this and the 
normalization condition into (32), we get 

- 
E = Eo -nW +d(l -n )S{F  - W[1+ (d - Z);]) -d(l - n)M.  (All) 

The optimum for a fixed S is obtained for 

EF) 

yielding M = SEF. Next, we minimize with respect to S as well, keeping in mind the 
normalization condition. If W is so small that 

F - EF =- W[1 i- (d - 2)nI (A131 

then the optimum is S = 0 and 14) = I*). In this model a fixed energy F - EF is needed 
to localize the screening electron, and there is an unphysical threshold for W, below which 
the system remains in the unperturbed ground state. Above threshold, however, the system 
will polarize, and the optimal value of S corresponds to the maximum; then a + db = 0 
and (@I*) = 0. This is the orthogonality theorem for the present model. 
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